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In Jacob Goldin, Ithai Lurie, and Janet McCubbin (2021—hereafter referred
to as GLM), we studied the effect of a randomized outreach experiment to
uninsured taxpayers by the Internal Revenue Service (IRS). We found that the
intervention increased health insurance coverage and reduced middle-age mortality
in subsequent years. Robert Kaestner (2021) criticizes our findings as well as a
recent study by Sarah Miller, Norman Johnson, and Laura R. Wherry (2021), which
provided evidence that state Medicaid expansions caused reductions in mortality
among low-income adults. In neither case does Kaestner provide new empirical
evidence or allege an error in analysis—his concerns relate solely to the
interpretation and convincingness of the presented results. Here, we briefly
respond to Kaestner’s criticisms of GLM. We conclude that his concerns do not
undermine our main empirical finding, which is that the coverage induced by the
IRS outreach reduced mortality.
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Statistical power
Kaestner’s main argument is that the study design in GLM was under-

powered and therefore that the results of the analysis, notwithstanding their
statistical significance, are likely to be random noise. We find Kaestner’s critique
unpersuasive for three reasons. First, at reasonable parameter values, the study has
more power than he alleges. Second, at plausible power levels, our results continue
to support our main qualitative conclusion, that the intervention reduced mortality.
Third, several features of our results are consistent with the hypothesis that the
intervention reduced mortality but would be quite unlikely to arise if the difference
in mortality between the treatment and control groups was due solely to statistical
chance.

Like Kaestner, we agree that ex-post power analyses along the lines suggested
by Andrew Gelman and John Carlin (2014) can be useful for interpreting a study’s
results. However, to be informative, such analyses require as inputs accurate
parameters to describe the study’s expected true effect. In our setting, there are
two main challenges to obtaining these parameters (we describe both challenges
more fully in GLM when interpreting our results, in section V.C and V.D). First,
we do not know the baseline mortality rate for the compliers, the group who
obtained additional coverage in response to the intervention. As we described in
the paper, and as others have suggested, there is reason to expect that those who
respond to interventions like the one we study may be particularly likely to benefit
from coverage, such that their mortality rate absent coverage is higher than for
the overall population. In fact, we provided suggestive evidence that the baseline
mortality rate of the compliers was twice as high as those who remained uninsured
after receiving the letter (see Appendix Table A.XXVI).4 The larger the baseline
mortality rate among the compliers, the larger the absolute difference in mortality
that our observed coverage effect would imply, and hence, the higher the power of
the study design.

The second important unknown input into the power analysis in our setting
is that we don’t know whether the additional months of coverage induced by the
intervention were concentrated among the same individuals or dispersed across a
larger number of individuals. For example, we find that the intervention increased
coverage by 0.36 months among the middle-age uninsured, which is consistent
with anywhere between 2 percent and 29 percent of that population enrolling
in additional coverage because of the intervention (Appendix Table A.VI).

4. Unless otherwise noted, all tables and figures refer to GLM or to its appendix (found here).
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Understanding the number of compliers over which the treatment effect is spread
is important for assessing reasonable magnitudes for the effect sizes; for example,
we probably wouldn’t expect someone who added 12 months of coverage to
experience a 12*7%=84% reduction in mortality, but it strikes us as quite
reasonable that someone who added 3 additional months of coverage would
experience a 3*7%=21% reduction in mortality from it, especially since they could
have concentrated their utilization of heath care services during that period
(Diamond et al. 2018). This is why it is incorrect for Kaestner to assert that only
assumed mortality effects of 3 percent or less are reasonable.

Because we do not feel confident about the true expected mortality
difference between the treatment and control groups, the analysis presented in
Appendix Figure A.V considered a range of parameter value combinations.5

Kaestner takes a different, hybrid approach. He assumes the intervention entirely
reduced mortality (pushing towards high power) but also assumes (1) the
compliers’ baseline mortality rate is the same as the overall sample population
(pushing towards lower power relative to our expectation) and (2) that the first-
stage effect was concentrated among minimal individuals; in other words, he is
assuming that health insurance makes people immortal, but there would be
relatively few people made immortal and they wouldn’t be people at particularly
high risk of dying.

Gelman and Carlin (2014) highlight two concerns that can arise in studies
that lack sufficient statistical power: obtaining a point estimate that exceeds that
magnitude of the true effect (an “M error”) and estimating an effect that has the
wrong sign (an “S error”). Because our main qualitative conclusion concerns the
direction of the effect—i.e., that the intervention reduced mortality—we focus on
the likelihood that our findings embodies an S error.6 To assess the likelihood of
an S error, we follow Gelman and Carlin and calculate the probability of obtaining
a statistically significant result of incorrect sign, conditional on obtaining a
statistically significant difference in the treatment and control group means, using
the simulation approach described in Appendix Table V. To reflect our uncertainty

5. Notably, our purpose in conducting this analysis was not to assess the level of power for the study
(the intervention had already been conducted). Rather, it was to select the age range for the analysis in a
principled way. Note also that the baseline mortality scalar for the compliers was designed to reflect not
only the difference between the compliers and the rest of the sample, but also the fact that the sample
(selected to be partially or fully uninsured during prior years, and therefore on average lower income and
facing greater instability) was likely to have higher mortality than the overall 45–64 population for the
United States (the mortality rate used as the input into the analysis). See the note to Appendix Figure A.V
for additional detail.
6. In contrast, we think it is quite possible that due to chance, our point estimate exceeds the magnitude
of the true effect of the intervention on mortality. As we wrote in the introduction to GLM, “we view the
effects at the lower magnitude end of our confidence interval as most plausible” (p. 3).
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about the true effect size, we again consider a range of parameter values for the
effect of an additional coverage-month on mortality (1 percent through 7 percent)
as well as the baseline mortality of the compliers (1, 2, or 3 times the 45–64-year-old
U.S. population average).

The results of this exercise are displayed in Figure 1 here. Across parameter
combinations, the probability of an S error does not rise above one-third; hence,
even in that scenario, it is incorrect to conclude, as Kaestner does, that our results
do not provide informative evidence about the direction of the effect of health
insurance on mortality. And for the parameter combinations we consider more
realistic, the probability of an S error is quite low. For example, with a complier
baseline mortality multiplier of 2 (our best guess, based on Appendix Table
A.XXVI), the probability of an S error is approximately 5 percent or below for
assumed treatment effects of 2 percent or more.

Figure 1. Probability of sign error by assumed treatment effect

Notes: The figure displays the probability of an S error at various assumed effect sizes of
health insurance coverage on mortality (x-axis) and various baseline mortality rates for the
set of individuals who enroll in one month or more of additional coverage because of the
intervention (the compliers). An S error is defined as detecting a difference in the
treatment and control group mean mortality rates that is statistically significant at the
5-percent confidence level with sign that is the opposite of the true (assumed) effect,
conditional on detecting any difference between the treatment and control group mean
mortality rates that is statistically significant at the 5-percent confidence level. Results are
based on simulations with N=1000 random draws of treatment and control populations.
The baseline mortality rate for compliers (i.e., the mortality rate absent any additional
coverage from the intervention) is alternatively assumed equal to one, two, or three times
the overall mortality rate of the overall U.S. population of 45–64 year-olds. General
population mortality is estimated from population-level mortality rates for 2016 from the
Social Security Death Index among individuals alive at the end of 2015. The code used to
produce this figure can be downloaded from the journal website (link).
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We see a similar story when we adopt Kaestner’s approach and assume that
there are relatively few compliers and that all of those compliers become immortal.
Assuming the minimum share of compliers consistent with the data (1.9 percent,
reported in Appendix Table A.VI) and a mortality reduction for that group equal
to their baseline mortality rate, we also observe low probabilities of an S error. For
example, using the baseline mortality rate for this group estimated in Appendix
Table A.XXVI implies an S error occurs with probability less than 1 percent.

The third reason we do not think Kaestner’s arguments about statistical
power undermine our main qualitative finding is that several features of our results
are more consistent with the difference in treatment and control group means
arising from the intervention as opposed to arising from statistical noise. Most
important is the timing of the observed treatment effect. As shown in Figure III,
cumulative mortality rates for the treatment and control groups are very similar
prior to the intervention, begin to diverge around the time of the intervention,
and continue to diverge as the time since the intervention elapses. This is the
pattern that one would expect if the intervention induced a persistent difference in
coverage between the groups that was effective at extending longevity. In contrast,
there would be no reason to expect that the difference in mortality rates would
emerge only after the intervention if the difference was simply due to random
chance. Similarly, the fact that the difference in mortality rates is concentrated
among the subset of households in the treatment group that increased coverage in
response to the intervention and not among those that did not (compare Figure III
with Figure A.VIII) is what one would expect if the observed difference in means
was due to the intervention but not if the difference was due to statistical noise.

In summary, although we of course cannot definitively rule out the
possibility that the statistically significant difference in mortality rates we observe is
entirely due to chance, accounting for the study’s statistical power does not suggest
that possibility is particularly likely and several features of the observed results lead
us to conclude that this possibility is fairly remote.

External validity
Apart from his concerns about statistical power, Kaestner (2021, 209) writes

that the results in GLM have “virtually no external validity” because the results
are identified from approximately 21,000 individuals induced to obtain insurance
because of the intervention, and this group may differ from the rest of the
uninsured population in relevant ways.7 As Kaestner acknowledges, we emphasize

7. In fact, as discussed in GLM, the estimated mortality effect is identified from the set of individuals who
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this point in the paper, noting that “the effect of coverage on mortality may be
particularly large among the individuals induced into coverage from the
intervention we study, as compared with other policies that reduce insurance”
(GLM, 41). Our results, therefore, are perhaps most informative for individuals like
the ones we study—i.e., those who already had access to coverage but for whom
misperceptions or other frictions prevented take-up. As we noted in the paper,
the effect of coverage for this group “is particularly policy relevant, since such
individuals’ coverage decisions can be shaped through outreach efforts of the type
commonly employed by governments and non-profits” (GLM, 4). Collectively,
these outreach efforts cost hundreds of millions of dollars each year;8 we think it
is important to understand the effects of the coverage they induce. In contrast, if
one was interested in predicting the effect of coverage induced by a state expanding
Medicaid, the estimates presented in Miller et al. (2021) may be a better place to
start.

Variability in point estimates for subgroups
Finally, Kaestner (2021, 200) casts doubt on the validity of the findings in

GLM because the reported point estimates for various subgroups are “all over the
place.” Again, we find this interpretation of results unpersuasive—in our view, he
is reading too much into statistically insignificant differences among subgroups.
Indeed, in GLM we characterized these analyses as “exploratory” (GLM, 36).9 In
addition, when these subgroups are analyzed collectively, we find that the overall
pattern is that groups that increased their coverage by higher amounts experienced
higher reductions in mortality—as one would predict if the observed mortality
reduction was due to the intervention—although whether this trend is statistically
significant varies depending on which subgroups are considered (as discussed on
pages 28–29 of GLM). Notably, some of the estimates presented by Kaestner
as evidence against the study’s validity actually strike us as supporting the
interpretation that the intervention reduced mortality. For example, in considering

would increase coverage in response to the intervention in the event that they receive an outreach letter. As
reported in Appendix Table A.VI, this group represents between 1.9 percent and 29 percent of the middle-
age sample population, or between approximately 26,000 and 394,000 individuals.
8. Federal funding for ACA-related outreach has fluctuated in recent years, with the budgeted amount for
ACA advertising declining from $100 million in 2017 to $10 million in 2018. However, states and non-
profits have continued to fund coverage-related outreach efforts at high levels—e.g., California’s 2018
budget for Navigator programs was $111 million (Seervai 2017).
9. One reason we chose to report these analyses was that though imprecise, they could usefully be
combined with results from other studies to paint a clearer picture.
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the analysis, we were initially concerned that the observed mortality reduction may
have been driven by a single, outlier treatment arm; we were reassured by the fact
(highlighted in Kaestner’s Table 3) that each treatment arm was associated with
a reduction in mortality. Similarly, Kaestner (2021, 203) describes the growing
divergence in cumulative mortality rates between the treatment and control groups
as an “anomaly,” but this pattern is exactly what one would expect to observe if
the intervention-induced coverage was driving the mortality difference, since the
treatment group continued to enroll in coverage at higher rates than the control
throughout the post-treatment period.

Conclusion
Kaestner (2021) criticizes the findings in GLM. As discussed above, we find

these criticisms unpersuasive. We continue to believe that the best interpretation of
the evidence reported in GLM is that the coverage induced by the IRS intervention
reduced mortality.
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