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LINK TO ABSTRACT

We are writing in response to Ford and Kay (2023), where the authors
criticise a decision theory which emerges in the field of ergodicity economics (EE),
contrasting it with another from expected-utility theory (EUT). We will refer to the
two models as EE and EUT, but we emphasize that both ergodicity economics
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and expected-utility theory are labels for fields much broader than what we discuss
here. We believe that the criticism of the EE model is due to a misunderstanding
on the part of the authors of Ford and Kay (2023), and we thank them for bringing
this to our attention so that it may be clarified.

Instead of providing a point-by-point reply, we limit our response to two
points, which we hope will unlock the key misunderstanding and clarify where
other apparent disagreements come from.

First, we feel the authors have missed an important point about the relation-
ship between EE and EUT. A mapping between the models exists, but the key
condition which needs to be satisfied for this mapping to hold is that the utility
function in EUT is chosen to be the ergodicity transformation of EE. It seems that
the authors believe that the key condition is merely sufficiently long time scales, but
this is not the case. We therefore clarify the relationship between the two fields by
specifying exactly the mapping between EE and EUT.

Second, we believe we have identified a misunderstanding regarding conver-
gent and non-convergent properties of random walks, which may have led to the
first misunderstanding above as it led the authors to write that “final wealth will
almost always be what the time average predicts” (Ford and Kay 2023, 317). In the
stochastic processes typically studied in EE, the appropriately defined growth rate
converges in the long run with probability one to its time average (and expected
value). However, this does not imply, as the authors write incorrectly, that final
wealth converges to its time average. Clarifying this misunderstanding will help
resolve their concerns about other aspects of EE. We provide exact computations
for the Peters coin toss discussed by Ford and Kay.

Formal setup
Both the EE model and the EUT model make use of a variable which

represents the wealth of a decision-making agent. However, the way wealth is
modelled is different in the two cases, and consequently, so is the way decision-
making is modelled. A mapping between the models exists; that is, we can specify
conditions under which they are equivalent. Generally, they are not equivalent, and
it is important to state the exact conditions for the mapping to hold in order to
specify the relationship between the models.

EE model

The formal setup for the EE model is illustrated in Figure 1. It is a choice
between two stochastic processes, xA(t) and xB(t) (Peters and Adamou 2018; Carr
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and Cherubini 2020), representing wealth over time. The processes are chosen
so that there exists a monotonically increasing transformation, f(x), whose incre-
ments, δf(t) = f[x(t + δt)] − f[x(t)], are ergodic. In particular, the time average of
these increments is identical to the expected value of the increments,

(1)lim
T → ∞

1
T

T

∑
τ

δf(t + τδt) = 𝔼[δf].

Figure 1. Left: EE operates on stochastic processes, xA(t) and xB(t) (blue random lines,
here geometric Brownian motions). It applies an ergodicity transformation f (here the
logarithm) which produces f(xA(t)) and f(xB(t)) (red random lines, Brownian motions).
These transformed processes are linear in time. Their slopes δf/δt converge to the time-
average growth rates (slopes of the straight red lines) as δt becomes large. Right:
increments δf over a single time unit (red lines, limited to the first 500 time units for
clarity). These have the ergodic property that their expected value equals their time
average. The increments in the original processes, δx (blue lines), do not have this
property, are unstable and not suitable for many computations of interest.

Because of this mean-ergodicity property, the transformation f is called the ergo-
dicity transformation. The rate of change of the ergodic increments is the appropri-
ately defined growth rate for the process,

(2)g = δf
δt .

EE decision axiom: According to the EE model, agents choose the process
which maximizes the time-average or, equivalently (because of the ergodic
property), the expected value of the growth rate g.

Motivation: Agents in this model can be thought of as representations of
people who make decisions in a financial context, where x represents wealth. By
maximizing the time average of equation (2), agents maximize the long-term
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Figure 2. Under EUT, agents choose
between two random variables, yA and yB,
defined by their probability density
functions in blue (here lognormals). The
agent applies a transformation, u, which
defines the new random variables u(yA) and
u(yB) (red, normals) and chooses the option
which maximizes the first moment of u
(vertical red lines), here option B is chosen
because its expected utility (solid vertical
line) is greater than that of option A
(dashed vertical line).

growth rate of their wealth. In the long run, agents who act in this way become
wealthier than agents who act differently.

EUT model

The formal setup for the EUT model is different; see Figure 2. Here, we
deal with a choice between two random variables (not between two stochastic
processes), yA and yB, representing wealth. A monotonically increasing transfor-
mation u(y), called the utility function, is defined.

EUT decision axiom: According to
the EUT model, agents choose the
random variable which maximizes the
expected value of the utility function,
𝔼[u(y)].

Motivation: Agents in this model
can also be thought of as people who
make decisions in a financial context,
where y represents wealth at a future
point in time. The utility function may
be thought of as a quantification of
how a given level of wealth relates to its
subjective value. A concave utility
function, for instance, represents a
person who assigns less value to an
extra dollar as wealth increases. By
using the expected value of utility as
their maximand, agents weight utility
according to the probability of attain-
ing it. Because the utility function can
be freely chosen, this model can de-
scribe many different behaviours. In EE, both wealth and utility are maximized as
time passes. There is no similar physical motivation for EUT; see the next section.

Mapping EE and EUT
A stochastic process is a family of random variables parameterized by time.

We can, therefore, move from the setup of EE to the setup of EUT by specifying
the current time, t, at which we wish to evaluate wealth under the processes xA
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Figure 3. The random
variable, y, required to map
EE to EUT is the value of
the stochastic process, x, of
EE at some fixed time, here
x(t+δt), as in equation (3).
We imagine the process to
start at a known value at
time t and use the density of
its trajectories at t+δt to
define the random variable y
= x(t+δt) required for the
EUT treatment.

and xB as it will have evolved by the later time, t + δt, see Figure 3. To establish
the mapping, we identify the random variables thus derived from the stochastic
processes as the random variables required for an EUT treatment,

(3)xA(t + δt) = yA and xB(t + δt) = yB.

Under the EE model, we compute the time-average growth rates of wealth under A
and B as the rate of change in the expected value of ergodicity-transformed wealth,

(4)–g = 1
δt{𝔼[f[x(t + δt)]] − f[x(t)]}.

The factor 1
δt does not affect the ranking of the time-

average growth rates for A and B, and we can drop it
from equation (4). Further, because current wealth is
identical for both processes A and B, subtracting
f[x(t)] in equation (4) does not affect the ranking
either, and we can also drop it. Maximizing equation
(4) is therefore equivalent to maximizing
𝔼[f[x(t + δt)]].

Completing the mapping, we summarize that
maximizing equation (4) is equivalent to maximizing
expected utility in the special case where

• future-wealth random variables xA(t + δt)
and xB(t + δt) considered in the EE model
are the random variables yA and yB con-
sidered in the EUT model.

• the ergodicity transformation considered
under EE is the utility function con-
sidered under EUT.

Relationship between EE and EUT
The EE model and the EUT model are equivalent under the restrictive

conditions specified in the previous section. It seems interesting to us to highlight
what differences emerge when only the second condition is violated, that is, when
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the utility function is not the ergodicity transformation, f ≠ u. In this case,

• Only agents who act according to EE and maximize the time-average
growth rate of wealth,

_g , also maximize utility, u, as time passes.
• Agents acting according to EUT and maximizing expected utility,

E(u(y)), do not maximize utility, u, as time passes.

These points are rarely stated but they constitute an important limitation
of EUT. EUT places great emphasis on defining utility as its quantification of
subjective value. In particular, EUT holds that it is better to use utility than money
when attempting such a quantification. One might expect the formalism of EUT
to guarantee that utility itself—the object of desire by definition—would be
maximized over time by agents acting according to its behavioral criterion. But this
is not the case.

In contrast, EE focuses on maximising the time-average (or expected)
growth rate of wealth. In doing so, it guarantees that EE agents, unlike EUT agents,
maximize not only wealth but also utility as time passes. This follows from the
assumption that utility is monotonically increasing in wealth (see section “Formal
setup,” subsection “EUT model” above). As time passes, EE agents are guaranteed
to do better than EUT agents, in terms of wealth and utility.

That EUT maximizes expected utility but does not maximize utility over time
is a direct consequence of the non-ergodicity of the wealth process and the utility
process it induces. Ergodicity implies that expected value and time average are
identical, and therefore in an ergodic utility process it is guaranteed that optimizing
the expected value of utility also optimizes the time average of utility. However,
the processes usually considered in EE are not ergodic. These include standard
models in finance and economics, for example Brownian or geometric Brownian
motion. Here, the equality of expected value and time average does not hold, and
consequently expected-utility theory does not optimize utility over time.

We feel that we should clarify another comment by Ford and Kay because
it allows us to highlight the astonishing experimental results obtained by the
Copenhagen group. EE, as Ford and Kay put it, violates the axiom of completeness
and leads to “inconsistent decision making” (2023, 316). This is a strange way of
saying that for a given pair of random variables yA and yB, EE can conclude that
either A or B is preferable if the dynamic is left unspecified. Of course the same
is true of EUT, if the utility function is left unspecified. It is unclear to us what
practical problem arises from this, but this served the Copenhagen group in their
attempts to put EE to the test.

Recall that the ergodicity transformation is given by the dynamic of the
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stochastic process x(t). It is a subtle but important detail that two different
stochastic processes, both starting at x(t) can yield identical distributions at a later
time x(t + δt). In particular, the processes may have different ergodicity transfor-
mations. Therefore, an EE agent evaluating what looks to EUT as the same
situation, namely the same random variables yA = xA(t + δt) and yB = xB(t + δt),
can arrive at different preferences depending on the process which generates the
random variables.

From the perspective of EUT, because it does not take dynamic information
into account, one could call this a violation of the completeness axiom of EUT.
Put more prosaically, this is a case of a hidden variable, and once the dynamic is
specified, the preferences of EE agents satisfy completeness. The case of the EE
agent using different dynamics is equivalent to the case of an EUT agent using
different utility functions. Of course, using different utility functions, the EUT
agent can also arrive at different preferences, violating completeness in the same
sense. But once a utility function is specified, also EUT preferences satisfy com-
pleteness.

However, the fact that EE preferences change according to dynamics
enables experimental explorations of the theory. By manipulating the wealth
process, x(t), in simple gambling tasks in a laboratory setting, experimenters can
control the ergodicity transformation. This makes it possible to test whether real
human subjects behave according to idiosyncratic utility functions or according to
circumstantial ergodicity transformations. To the great astonishment of most of us,
the latter is often the case: fitting the EUT model to choices made under different
dynamics reveals that people change their apparent utility functions to coincide
with the relevant ergodicity transformation (Meder et al. 2021; Skjold et al. 2023).

By its construction, EUT does optimize expected utility, but because the
wealth process is not ergodic, this object is different from what materializes for the
decision-making agent. While the expected value is approximated by the average
over large statistical samples, it is not generally a quantity of interest for an
individual decision maker.

We illustrate this with the Peters coin toss. An agent is offered a repeated fair
coin toss, where heads leads to a 50 percent rise in wealth and tails leads to a 40
percent drop. The coin toss is also discussed in Ford and Kay (2023), a video about
it is available via ergodicity.tv (link), and an interactive blog post is available on
ergodicityeconomics.com (link). It is a special case of the multiplicative binomial
process (Redner 1990).

First, we evaluate the gamble on offer using the EE model. Here, two
stochastic processes are compared. The first stochastic process is trivial: if the agent
rejects the gamble, wealth will be unchanged at its current level, xA(t + δt) = x(t).

The second stochastic process arises from the agent accepting the gamble,
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and xB(t) is a random walk in logarithmic space. The ergodicity transformation for
this particular dynamic is the logarithm,

(5)f(x) = ln (x),

and both δ ln (xA) and δ ln (xB) are ergodic. This means the appropriately defined
growth rate is

(6)g = 1
δt [ ln x(t + δt) − ln x(t)]

and its time average is

(7)–g = 1
δt𝔼[δ ln x].

To be explicit: it is the ergodic property of δ ln x, which allows us to maximize the
time average of δ ln x (and thereby

_g ) by maximizing the expected value𝔼[δ ln x].
This maximisation guarantees that we end up with greater wealth (and utility) in
the long-time limit. Evaluating for both processes, we find

_g (xA) = 0 per round
and

_g (xB) ≈ −.05 per round. The EE agent picks the process with the greater time-
average growth rate, rejects the gamble and remains at x(t + δt) = x(t).

Second, we evaluate the gamble on offer using the EUT model. To be able to
do this, the agent needs to specify its utility function. To illustrate the problem with
a simple example, let’s say the agent has linear utility, u(y) = y, although the situation
we’re about to highlight also arises with many other utility functions.

For simplicity, we let the agent evaluate utility after one round, although
nothing changes if the agent were to evaluate utility after an arbitrary number of
rounds. Here, two random variables are compared. The first random variable is
trivial, namely, wealth remains unchanged if the gamble is rejected, and yA = x(0).
The expected utility associated with this random variable is, trivially,

(8)𝔼[u(yA)] = x(0).

The second random variable, yB, takes the value 1.5x(0) with probability 1/2 and
0.6x(0) with probability 1/2. The expected utility associated with yB is
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(9)𝔼[u(yB)] = 1
2 [u(1.5x(0)) + u(0.6x(0))] = 1.05x(0).

Since𝔼[u(yB)] is greater than𝔼[u(yA)], the EUT agent with linear utility will always
choose to participate in the gamble.

However, as we’ve seen in the EE analysis, the time-average growth rate
of wealth is negative for this gamble: the probability that the agent loses money
approaches 1 over time. Because the agent’s utility function is monotonically in-
creasing, losing money means losing utility.

This illustrates that the EE agent maximizes utility over time, whereas the
EUT agent only maximizes expected utility but not actual utility. In the simple
example we’ve given, the EUT agent loses utility as time passes, whereas the EE
agent does not. Ergodicity in multiplicative dynamics is broken in such a way
that the expected value of many monotonically increasing utility functions does
not indicate how utility actually behaves with probability 1 over time. In many
cases, as in our example, an increasing expected utility 𝔼[u(t)] is accompanied by
systematically decreasing actual utility, u(t).

Wealth uncertainty diverges while
growth-rate uncertainty vanishes

That the EE model produces such different outcomes from the EUT model
is a profound consequence of uncertainty, which we believe was overlooked in
Ford and Kay (2023, 317), where the authors write: “The time averages used in
[the EE model] correspond to a situation where there is no measurable
uncertainty—final wealth will almost always be what the time average predicts.”

This sentence seems to us to reflect a misunderstanding. The EE model
uses the time average of the growth rate of wealth,

_g , as its decision criterion. It
does this because this quantity converges to a meaningful finite value, and such a
simple scalar is needed to rank the stochastic processes xA and xB. However, this
convergence does not imply that wealth itself, x(t), converges to a value predicted
by the time-average growth rate. For instance, in the Peters coin toss, if we average
the growth rate over a finite time T, then its variance vanishes as 1/T. The variance
of wealth, on the other hand, diverges exponentially. Contrary to Ford and Kay’s
statement, there is great uncertainty in final wealth, in the sense that it diverges
in the limit T → ∞, whether we measure it by variance or other relevant ways of
measuring uncertainty (see Appendix). Specifically, in the Peters coin toss with
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linear utility, the uncertainty leads to the ordering under EUT being different from
the ordering under EE, whether after a finite or divergent number of rounds. This
means that the uncertainty in terminal wealth is not only measurable but crucially
important in the case under consideration.

We can only speculate here, but this misunderstanding may explain other
comments by Ford and Kay (2023), which we find difficult to understand other-
wise. For instance, the authors write:

• “[O]ne might expect that, as the gamble’s length goes to infinity,
the predictions of EUT would approximate the growth-optimal pre-
dictions” (Ford and Kay 2023, 318).

• “[U]tility approaches [the EUT model] and growth-optimal approaches
[the EE model] are likely to give the same answer in many cases” (ibid.,
326).

• [The difference between the growth rate of the expected value and
the time-average growth rate] “is mechanically incorporated in an EUT
analysis of choices as only final outcomes are considered” (ibid., 318).

As we say in the “Mapping EE and EUT” section above, the two approaches
only give the same answer if the utility function, u, is chosen to be the ergodicity
transformation, f. However, the authors seem to be under the impression that the
EE model essentially considers wealth far in the future and that this wealth is
known with “no measurable uncertainty” (Ford and Kay 2023, 317). If this were the
case, then their statement would be true: EE would compare known wealths xA(t)
and xB(t) at some large t, and EUT would compare utilities u[xA(t)] and u[xB(t)] (we

would be allowed to replace E[u[xA(t)]] by u[xA(t)] when there’s “no measurable
uncertainty” in xA(t)). Because u(x) is assumed to be a monotonically increasing
function, the preference orderings of A and B would be the same under both
models. If this were true, one would presumably use neither EE nor EUT and just
compare asymptotic wealth or, equivalently, utility. But none of this is actually the
case, and uncertainty in x(t) grows beyond all bounds with t.

Wealth, in absolute terms, in the Peters coin toss goes to zero with
probability one. In this sense, asymptotic wealth is known in this particular case.
However, this is an asymptotic statement which must be interpreted carefully. The
statement that terminal wealth is known with “no measurable uncertainty” is not
correct, even in this special case as should be clear from the fact that expected
wealth diverges while most probable wealth goes to zero. Uncertainty in terminal
wealth diverges with time if we measure it by standard deviation; it also diverges if
we use relative measures of uncertainty (see Appendix); most significantly, in the
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present case (coin toss with linear utility), the uncertainty in terminal wealth leads to
expected utility of terminal wealth being positively divergent, whereas utility of the
terminal wealth which is approached with probability one is zero. This illustrates
once more that EE is a very different model than EUT.

Experiments and the role of psychology
Ford and Kay are critical of experimental work carried out to establish the

realm of validity of the EE model (Meder et al. 2021; Vanhoyweghen et al. 2022).
We agree with many of the criticisms and will provide a detailed response in a
separate reply. We note that experimental design is always subject to constraints,
such as ethical and financial considerations. Nor can a laboratory experiment ever
be truly realistic, and in the process of designing, choices must be made. We have
actively sought critiques of the designs of the existing experiments and have
ourselves spent a great deal of time discussing weaknesses and alternatives. We
have taken seriously all critiques we have received and incorporated them into the
next phase of experiments (Skjold et al. 2023).

Controlled laboratory experiments are of interest to psychologists and
neuroscientists. The experiments help clarify in how far EE provides a new be-
havioral baseline, deviations from which may yield insights into individual psy-
chology. Ford and Kay’s concern that EE “claims to provide an objective justi-
fication for decision making without the need to refer to individual psychology”
(2023, 315) is therefore misplaced. It is not by accident that individual psychology
(represented by idiosyncratic utility functions in EUT) is excluded from the EE
model. Neuroscientifically, it is extremely exciting that behavior which used to be
thought of as idiosyncratic, trait-like, and changeable only on evolutionary time
scales can actually be altered by a simple intervention in the experimental environ-
ment on time scales of hours rather than millennia.

Conclusion
We conclude with a quote from the memoir of Giorgio Parisi. Referencing

the difficulty of transmitting ideas across traditional disciplinary boundaries, he
wrote: “I believe that with a lot of good faith and a lot of patience, at least in the
majority of cases, it is possible to arrive at shared conclusions. Or at the very least
to clarify where our disagreements come from” (Parisi 2023, 18). We hope that this
will be the case in the present context too.
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Appendix
We provide a technical analysis of the coin toss game in an appendix available

at the journal’s website (link).

Data and code
All data shown here are for illustration purposes only and were randomly

generated. Codes to reproduce all data and figures are available from the journal’s
website (link) and are archived at Zenodo (link).
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